Int. J. Solids Struciures Vol. 23, No. 4, pp. 521- 536, 1987 0020-7683/87 $3.00 +.00
Printed in Great Britain, Pergamon Journals Lid.

LEAST-WEIGHT DESIGN OF PERFORATED
ELASTIC PLATES—It

G. I. N. ROzvANY,} T. G. ONG, W. T. SZETO and R. SANDLER
Department of Civil Engineering, Monash University, Clayton, Victoria, Australia 3168

and

N. OLHOFF§ and M. P. BENDSQE
Department of Solid Mechanics and Mathematical Institute, Technical University of Denmark,
DK-2800 Lyngby, Denmark

{Received 21 June 1985)

Abstract—The paper investigates implications of some recent mathematical developments in the
fields of shape optimization and relaxation of variational problems. Considering the least-weight

" design of perforated elastic plates in either flexure or plane stress for a prescribed compliance, it is
shown that at low rib densities microstructures consisting of a combination of first- and second-
order infinitesimal ribs is superior to those consisting of purely first-order infinitesimal ribs.
Moreover, it is indicated that thin ribs of infinite length/thickness ratio do not contribute
significantly to the stiffness in a direction normal to their plane. On the basis of this conclusion, a
simple specific cost function is derived and then it is used in the design of circular, uniformly loaded
perforated plates with zero value of Poisson’s ratio. As a basis for comparison several intuitively
selected topographies are optimized for the case of simply supported plates, and in Part II of this
study a variational analysis is used to obtain the optimal solutions for plates with simply supported,
clamped or loaded edges.

1. INTRODUCTION

This study is concerned with the weight minimization of transversely loaded perforated
elastic plates having a constant thickness and a prescribed compliance but a general
formulation for plates in plane stress is also discussed.

The present investigation has been prompted by a series of discoveries in plate
optimization which have brought about a profound revision of the underlying principles
and exposed some unexpected features of least-weight plates. Cheng and Olhoff[1] have
found that stiffener-like formations appear in elastic plate solutions if the maximum and
minimum values of the plate thickness are prescribed and the number of finite elements
used are sufficiently large. It was then pointed out by the late Professor W. Prager
(Brown University) that the layout of such stiffeners is similar to that of least-weight grillages,
derived independently by both Prager and Rozvany[2,3]. Subsequent investigations by
Olhoff, Cheng, Lurie, Cherkaev and Fedorov[4-6] show that considerably more efficient
plate designs can be derived from a new formulation in which the set of feasible solutions
is extended to functions with an unlimited number of discontinuities. Such designs were
obtained numerically via the introduction of a rib-density function. A similar concept (beam
density) was used implicitly by Prager and Rozvany[2, 3] in deriving least-weight grillages
which degenerate into “grillage-like continua” (Prager). For the case of plastically designed
plates of a prescribed maximum thickness, Rozvany and co-workers[7, 8] obtained closed-
form analytical solutions. The latter study shows that for axisymmetric plates the least-
weight solution may contain only two types of regions: (a)solid plate segments with equal
principal moments (M, = M,) and (b) one-way rib systems of maximum depth. As plate
designs with discontinuities in the thickness may not fulfil some assumptions of the classical
theory of thin elastic plates, Kohn and Vogelius[9] developed a rigorous model for handling

t The authors wish to acknowledge the late Professor W. Prager’s lasting contribution to the methods
employed in this project.

1 Since 1985: FB 10, Essen University, 4300 Essen 1, West Germany.
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Fig. 1. The correct structural behaviour of a first/second-order microstructure.

rapid changes in the cross-section. Numerical solutions based on solid and ribbed regions
were derived for non-axisymmetric boundaries by Bendsge[10]. Kohn and Strang[11] have
also found that in shape optimization problems involving plastic design an infinite number
of internal boundaries (“holes”) appear in the optimal solution. Mathematical aspects of
optimal microstructures for various physical problems involving composites were discussed
by Lurie and co-workers[12-16], as well as Kohn and Strang[17, 18].

The above investigations included the study of minimum weight plates consisting of
two linearly elastic materials. A common feature of formulations for plates was the
underlying assumption that thin ribs can be treated as plate elements so that the effective
stiffness of rib-stiffened plates can be obtained by homogenization of the Kirchhoff plate
equation. While this line of investigation is of considerable importance, indicating the true
nature of the solution for the original mathematical problem, the theoretical optimal
solution in some cases may lie outside the range of validity of traditional plate theory or
its recent extensions. Also, the optimal solution may be physically unrealistic for other
reasons (buckling of ribs, ribs behaving like beams rather than plate elements, etc.). The
problems mentioned arise in particular when the elastic modulus (and specific cost) of one
material considered tends to zero and thus a composite is.replaced by a perforated material
(plates containing an unlimited number of “holes”). For these reasons, a formulation based
on a physically more realistic microstructure is discussed in this paper.

2. REASONS FOR A NEW MICRO-MODEL

In the papers of Lurie and co-workers[12-16] as well as Kohn and Strang[17], the
theoretical optimal solutions for various problems contain regions with two sets of
intersecting ribs (layers of material). This type of solution will be confirmed here on the
basis of physical arguments for least-weight plane stress and perforated plate problems,
i.c. the optimal solutions for such problems will be shown to contain regions with two sets
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of intersecting ribs in the principal directions and with spacing of different order. One such
set has a first-order infinitesimal spacing (of O(d) with § — 0) and the other set a second-
order infinitesimal spacing (of O(5%), see Fig. 1(a)). Considering a plane stress problem first,
a typical rib ABCD is shown in Fig. 1(b) and one of its ends in an enlarged version in Fig,
1(c). The considered ends are subjected to (i) some symmetric normal stress distribution
and (ii) symmetrically distributed shear stresses (since the resultant shear stress is zero in
the principal direction and hence the considered rib is also free of in-plane bending).
However, the well-known Saint Venant’s principle[19] states that self-equilibrating load
systems acting within an infinitesimal region of an elastic body have no effect on the
stresses at a finite (or lower order infinitesimal) distance from such a load. It follows that
the shear stresses along AC (Fig. 1(c)) and the non-uniform part of the axial stresses
(Fig. 1(d)) do not influence the stresses at a distance of O(6) from the end (having a width
0(6?)) and hence the state of stress along EF (Fig. 1(c)) will consist of uniformly distributed
normal stresses in the direction of the rib and vanishing (zero) normal stress in the second
principal direction. The shear stress also takes on a zero value along a general cross-
section (EF). For a zero value of Poisson’s ratio (v = 0), the lateral strain will also vanish

at O(d) from the rib ends. In calculating the total compliance (J o, dxdy dz) for all ribs
D

of 0(6%) width, we find therefore that only the longitudinal stresses (o, in Figs 1(a) and (c))
have a significant effect because all other stresses spread only over a distance of 0(62) from
the rib ends.

Basically the same argument can be extended to second-order infinitesimally thin ribs
in perforated plates. Such ribs have a first-order infinitesimal length and a finite height
(which is small in comparison to the plate span for “thin” plates and could therefore be
modelled as a first-order infinitesimal). This implies that the rib thickness is at least one
order of magnitude smaller than the height and length of the rib. If such ribs are in the
principal directions and body forces are neglected, the ribs will be loaded only along their
edges. Again, the edge loads consist of in-plane stress resultants and self-equilibrating load
systems within infinitesimal regions. Such ribs therefore fulfil all classical assumptions for
in-plane stress problems[20, pp. 15-34] with significant stress components only parallel to
the mid-plane of the ribs. All other stresses, by Saint Venant’s principle, may only spread
at a distance of 0(6%) from the edges and hence their effect on the total compliance can
be neglected. The same conclusions will be confirmed by numerical (finite element/finite
difference) methods in a subsequent paper.

The above reasoning shows that the treatment of second-order ribs as two-way plate
elements in perforated plates might not be entirely realistic from a physical point of view.

3. PROBLEM FORMULATION FOR PERFORATED PLATES

Bearing the above conclusions in mind, we can now formulate our problem as follows.
Minimize the total structural weight of a linearly elastic stressed system whose middle
surface D is contained in a horizontal plane referred to coordinates (x, y). The considered
structure is subjected to vertical loads p(x, y) and its depth at any point can take on only
one of two values: (i) zero, or (ii) a given constant h. From areas of zero thickness the load
p(x, y) is transmitted by some secondary system whose volume tends to zero and is therefore
neglected. It is assumed that the vertical deflections w(x, y) and depth “h” are small in
comparison to the horizontal dimensions of D and hence shear and normal (membrane)
forces can be neglected in calculating deflections and compliance. As the depth is small
relative to the spans, it is further assumed that all normal stresses in the horizontal
directions are proportional to the distance from the mid-plane of the plate. Here, only
elastic materials having a Poisson’s ratio of zero will be considered. On the basis of optimal
microstructures derived by Lurie and co-workers[12-16] and Kohn and Strang[17, 18]
only the following types of admissible regions are considered in the solution.

(a) A solid plate of depth “h” (which may include “ribs” of finite width).
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(b) Regions consisting of systems of “ribs” of infinitesimal width and infinitesimal
spacing. The ribs may run in one or several directions and their spacing may be a first-
or higher-order infinitesimal.

It can be shown easily through physical reasoning that in any type “b” region above
the ribs must run in the “principal” directions. By definition, the torsional moment takes
on a non-zero value for any non-principal direction. Considering ribs of depth h = 0(6°)
and width 6 with 6 =0, the flexural stiffness is E&k%/12 = O(8). It follows from the
membrane analogy of elastic torsion problems for prismatic bars[20, pp. 303-307] that
the stress function for such ribs is O(6%) and thus its integral for a cross-section of width
d (representing the torsional stiffness) becomes 0(3). As the torsional stiffness of ribs of
infinitesimal width is two orders of magnitude smaller than their flexural stiffness, any
non-zero torsional moment over a finite area would produce two orders of magnitude
higher compliance than ribs in flexure only, which clearly cannot be optimal. It follows
that infinitesimal ribs in the considered optimal solution can only run in the principal
directions, which are known to be at right angles.

4. PHYSICAL REASONS FOR THE OPTIMALITY OF MICROSTRUCTURES WITH
FIRST- AND SECOND-ORDER RIB SYSTEMS (PERFORATED PLATES IN BENDING
OR PLANE STRESS)

In this section, physical reasons based on fundamental principles of elasticity are given
for the improved economy of first/second-order rib systems over first/first-order systems.
Perforated plates in both plane stress and bending will be considered.

Figure 2(a) shows a modified version of a first/first-order system in which (i) for
simplicity, the spacing of the ribs is unity (instead of a first-order infinitesimal), and (ii) the
stiffness is the same in both principal directions (in Fig. 2(a) the rib width is “b” for both
rib systems). On the basis of the discussion in Section 2 (using Saint Venant’s principle),
significant two-way stresses occur only over a limited region at the intersections (see shaded
area in Fig. 2(a) and some fictitious lines of principal stresses in Fig. 2(b)). Considering the
stresses in the ribs in the y-direction, e.g. the extent of stress diffusion over the rib
intersection can be represented by some equivalent width of cb over a length b of the y-
ribs. The value of the stress diffusion factor ¢ is chosen in such a way that a uniformly
stressed prismatic member along the intersection gives the same stiffiess as the real
intersection. The actual value of ¢ is being evaluated for various values of b by a detailed
numerical analysis and will be discussed in a later paper. However, preliminary indications
are that c is greater than 1 and significantly smaller than 2

l<c<2 (1)

Figure 2(c) indicates a first/second-order system in which the rib density b/a;, = b of
the second-order system is the same as that of the first/first-order system b, — 0 and a, —+ 0.
The total material volume of both microstructures is therefore the same. Referring again
to the discussion in Section 2, we can see from Fig. 2(d) that the effective width of the first-
order ribs in the x-direction will be “b” because the diffusion of the x-stresses into the
second-order ribs is restricted to an additional width of O(d) with 4 — 0. On the other
hand, it follows from Saint Venant’s principle again that the stresses transmitted from the
second-order y-ribs onto the first-order x-ribs will diffuse into a uniform y-stress within a
distance of O(4) from the edge of the x-ribs of width b (see Fig. 2(d)). This means that the
entire volume of the x-ribs can be assumed to be uniformly stressed in two directions since
the zone of stress diffusion is negligibly small, i.e. 0(9). .

Next, we shall determine the mean stiffness S,y = (S, + S,)/2 for the two systems in
Fig. 2. The discussion that follows is restricted to relatively low density microstructures
with b « 1 and a zero value for the Poisson’s ratio (v = 0). Considering the flexural system
in Fig. 2(a), the principal moments (per unit width) in the x- and y-directions will be
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Fig. 2. Intuitive argument showing the higher efficiency of first/second-order microstructures over
first/first-order microstructures at low rib densities.

denoted by M, and M, and the corresponding equivalent stiffnesses by S, and §,. The
current derivation is also valid for plane stress problems if M, and M, are replaced by
principal forces (per unit width), N, and N,. The normalized equivalent stiffnesses are given
by

M _M{1-b) Mb_, dl-b+b
a=b+b

= > i=xy) ¥))

Si b ch

since here we are dealing with a member with two prismatic segments having the respective
lengths of (1 — b) and b and widths of b and cb. It is assumed that the normalized stiffness
of each prismatic segment equals the width of that segment. The equivalent stiffness S, is
given by the stiffness of a single prismatic rib whose length equals the combined length
(1.0) of the two prismatic segments considered above and whose total change of slope
(M,/S) is the same as the sum of the changes of slope over the same two prismatic segments.
Since in this case both stiffnesses are the same, the average stiffness S,y becomes

be _ b
cdl=b)+b 1—-b1-1/c)

sﬁv =§=

3
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Fig. 3. Intuitive argument showing the higher efficiency of first/first-order microstructures at high
rib densities.

For the first/second-order system in Fig. 2(c) the equivalent stiffnesses become

M,  M/10) _
5. 5 0 x=b
M 1—b b I —b+b? b @
kb 2 R I 7Ty -7
s, M’( b +1> M= S=1T3m
implying
1 b 1 — b2 + b2
SB =—b =
AV 2< +1-b+b2) e )

The first/second-order system is more economical if S4y < S5y implying

o <13 g )l -o(1-})
1—b+b <(1 2+?[1—bl—z 6)

or

1 b b? 1

Inequality (7) clearly holds if c is significantly less than 2 and b is small. Considering
the values of c = 1.5, b = 0.2, e.g. eqns (3) and (5) imply

3
14

A
SAV_

= (0.2142857, Skv = 0.2190476

indicating a higher economy for the first/second-order microstructure. However, the same
economy does not follow from inequality (7) for high values of b. Moreover, the stress
pattern shown in Fig. 2(a) is not valid for high rib-density (b) values approaching unity as
can be seen from Fig. 3(a). If the openings (holes) in the plate are small {((1 — b) x (1 — b))
in comparison to the rib width (b) then by Saint Venant’s principle again a uniform stress
is achieved at a small distance from the openings (see AB in Fig. 3(a)). This means that
only a small part of the system (shaded area in Fig. 3(a)} is not stressed in two directions.
Replacing the above microstructure with a first/second-order one (Fig. 3(b)) would increase
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S,

Fig. 4. Rib density values for the calculation of stiffnesses and the specific cost of a first/second-
order microstructure.

the areas in one-way stress (shaded areas in Fig. 3(b)) thereby reducing the efficiency of
the system.

It appears, therefore, that a first/second-order microstructure is only economical for
low density perforated plates (having a low “b” value). This conclusion will be confirmed
by detailed numerical analysis in a future paper. However, for the purpose of the present
investigation, it will be assumed that the solution consists of (i) regions without perforations,
and (ii) regions containing first/second-order microstructures.

5. DERIVATION OF THE SPECIFIC COST FUNCTION FOR FIRST/SECOND-ORDER
MICROSTRUCTURES

Figure 4 indicates a first/second-order microstructure in which the spacing of the first-
order ribs is assumed to be unity (instead of first-order infinitesimal) and the second-order
ribs are lumped together over a width d, (in reality they are uniformly distributed). Using
the method explained in Section 4, the normalized equivalent stiffnesses can be calculated
for zero Poisson’s ratio (v = 0) as follows:

S, =d,
5 1 - d:l:- d,d,
It follows that
Y ©

and the specific cost function, y, representing the plate area per unit area of the middle
surface, then becomes

Sx(1 -8, §,—25,5,+8,

V=ditdll - d) =S+ g5, =T 15,

(10)

The restrictions on the stiffness values are

0<S,<1 (=12 (1
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Fig. S. Specific cost contours for first/second-order microstructures.

The above specific cost function is represented graphically by contour lines on F ig. 5. For
§, =0, S, — 0, the specific cost function reduces to

y=8+8, (12)

which is the correct cost function for Michell structures (in plane stress)[21] and grillages

(in flexure)[2, 3] optimized for given compliance. This means that the present theory reduces

to the classical theory of minimum weight trusses and grillages for very low rib densities.
The derivatives of the above specific cost function are given by

W _ (=8P (=12

38, (1=SS) (j=21)
Finally, for S, = §, = §, eqns (10) and (13) reduce to

25 4 1 (i=12 (14)

V=T¥s @ a7

and for §, = 0 eqn (10) reduces to

- Ny, M-
V=S =L g=(-S) (15)

The total “cost” to be minimized is the plate area (without perforations) times the
plate thickness h (= const.)

®=hj Y dxdy. (16)
D

6. YOLUMES OF INTUITIVE DESIGNS FOR SIMPLY SUPPORTED CIRCULAR
PLATES

A variational formulation for deriving the absolute minimum plate volume will be
discussed in the last few sections of this paper, but to establish useful comparisons with
the optimal solution, we first consider a series of intuitive designs for simply supported
circular plates with a uniform distributed load.

Using the notation: 7 = radial coordinate, M, = circumferential moment (per unit
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width), M, = radial moment, R = plate radius, j = const. = loading per unit area, 5, = cir-
cumferential stiffness (per unit width), S, = radial stiffness (per unit width), C = prescribed
total compliance, ® = total plate volume, h = plate depth, E = Young’s modulus, w = plate
deflection, we introduce the non-dimensional parameters

r=FR, M;=M/pR* (i=6,r),
S, = 125/ER®,  C = CRE/24nR%p?, 17)
® = O2hR*n, w=wh*E/12R*p.

The usual equilibrium condition then becomes
(rM,))" —Mg=—r, M{0)=M0), M[(1)=0 (18a)
which may be readily integrated
M,y — My = ~r¥2, MJ1)=0. (18b)

The compliance condition takes the form

3 1
J‘ [(M3/S,) + (M2/Sg)]rdr=C =J. wrdr (19)

(v} 0

and the non-dimensional total cost is furnished by

1
®= I W(Se, S,)rdr (20)

0

where ¥ is given by eqn (10). In the following, the quantity C¢ is used to ensure that the
latter takes on a finite value for the limiting case (1/C) - 0.
With the notation described above the intuitive designs can be characterized by:

6.1. Design A (M, = 0, S = My/k where k is a given constant)

This design consists of circumferential ribs only. Although the external load cannot
be transmitted to the supports without radial ribs, this layout can be regarded as a limiting
case of a system consisting of both radial and circumferential ribs in which both the radial
stiffnesses and radial moments approach zero (or are at least negligibly small). Design A
provides a useful basis for weight comparison but it is unrealistic for practical purposes
because its radial ribs would be subject to very high shear stresses and shear strains.
Moreover, the present formulation neglects the effect of shear on the total compliance.
Considering plates with a small depth/span ratio, this assumption is realistic for all other
designs (which have finite radial stiffness) but not for Design A. By eqns (18a) and (19)

My=r22,  S;=r%2k,  k/8=C (21)

so the total cost for Design A is given by C® = 1/64.
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6.1.1. Limit of validity. As Sg <1 also for r =1, Design A is only possible when
112k € 1, ie. for

1/C < 16. (22)
6.2. Design B(M, = M,, S; = Mk (i = 6,r))
This design consists of a two-way system of ribs throughout. The constant & is to be

determined from the magnitude of the prescribed compliance. By eqns (18b) with M, = M,
we have (rtM,) — M, = rM, = —r?/2 and hence as M(1) =0

M, =M, =(1-r?)/4, S, =85 =38= (1 —r?/dk. (23)

The compliance constraint (19) gives the value of k
1
ZkJ [(1 ~ r¥r/4]dr = k/8 = C, k=8C (24)
0

and the total cost of Design B is thus given by

Y1 —r¥rdr

Co=2C — "
o 4k +(1—1r?)

= 32C*[In(32C) — In(32C + 1)] + C. 25)

In order to obtain the limit of C® for (1/C) — 0 we perform a MacLaurin expansion of
C® around (1/C) = 0. From this

1 1 1

C® =%~ 3073¢ T 3l072C2 T

(26)

so for (1/C) = 0, Design B gives the same cost as Design A. Variation of C® as a function
of C is shown in Fig. 6 in which vertical line segments show the limit of validity of a
design.

6.2.1. Limit of validity. The constraint S, < 1 should also hold for r = 0, so eqns (23)
and (24) give that for Design B, C must satisfy

1/C < 32. 27)

6.3. Design C (Mg =M, forr < g, Mg =0 for r > g, and S; = M,/k throughout the plate
(i=6,r)

This design consists of a two-way system of ribs in the inner region 0 < r < g and of
radial ribs only in the outer region g <r < 1.

With M, = 0 for r > g, eqns (18b) furnish

M, = (1 —r*/6ér, forr>g. (28)

Due to continuity of M, at r = g we have M,(g) = (1 — g°)/6g, and this is then the boundary
condition for the region 0 < r < g. Solving eqns (18b), we have

2
M,=M,,=<3—2§+%——r2>/4 forr < g. (29)
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Moreover, by eqns (28) and (29), the compliance constraint becomes

2kr(2 g 2) 4)d qul 3)/6]d
i-&-?—r (r/4)dr + g[(—r)/ r

0

= (k/6Xg — g*/4 + 3/4 — g + g*/4) = k/8 = C, k=28C (30)

which determines the constant k. The total cost for Design C can then be expressed as

M,
o= f BT M dr+f (M,/8C)rdr

= g> + 32CIn{[8C + (1 — g*/6g)/[8C + (2 + g*)/12g]}
+(1/192C)3 - 4g + g*).  (31)

Note that for g = 0 eqn (31) reduces to the total cost value for Design A, and for g = 1
furnishes the cost value for Design B.

Moreover, it can be shown by expansion that for (1/C) — 0, cqn (31) gives CO = 1/64
which is the total cost for Design A. This result is again to be expected on the basis of the
grillage theory[2; 3; 22, pp. 184-188] which indicates that for all fields with M, >0,
M, > 0,5, = M//k the total volume C® of circular simply supported grillages is an invariant.

6.3.1. Limits of validity. Using that S; = M,/k should be less than one for r = 0, eqns
(29) and (30) furnish that for Design C we should have

/3 + g¥/3)/RC < 1. (32)

6.3.2. Optimal boundary radius “g”. The usual stationarity condition d®/dg = 0 applied
to eqn (35) furnishes the optimal valuc of g

dao 32C(1 + 2g%) 64C(1 — g% ,
dg = %~ — 1)/48C = 0.

Variation of C®,,, and g, for Design C is shown in Figs 6 and 7. It can be easily checked
that inequality (32), combined with eqn (33) is satisfied for low values of (1/C). The upper
limit of validity of Design C is given by inequality (32) and eqn (33)

1/C < 29.4722520. (34

For (1/C) > 29.4722520, we can still have a C-type design but the latter is governed by
(32) as an equality and not by eqn (33). Optimal values of C® and g for this version of
Design C are also shown in Figs 6 and 7. The absolute upper limit of Design C is given
by (32) as an equality with g = 1, furnishing (1/C) = 32. At that compliance value, Designs
B and C are identical.

Note: It can be seen from Fig. 7 that g, changes rapidly in the vicinity of 1/C = 0.
As the left-hand side of eqn (33) has limiting value zero for (1/C) — 0, all g-values give the
same cost C® for 1/C =0 which agrees with the relevant implications of the grillage
theory[22]. However, it can be shown that the left-hand side of eqn (33) multiplied by C?
gives a limiting value of g,,, = 0 at (1/C) - 0.
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Fig. 6. Comparison of the total weight of optimal solutions (D) with those of various intuitive
designs (A, B, C and E) for uniformly loaded simply supported circular plates.
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6.4. Design D (Sy=8,=1 forr<gand My =0, S, = M,/k forr > g)
This design consists of a solid plate in the inner region (r < g) and radial ribs in the
outer region (r > g). With M, = 0 in the region (r > g), eqns (18b) give
M,=(~rY6r forr>g. (35)
In the inner region (r < g), M, = —S,w" = —w" and My = —SeW'/r = —w'/r, where w is

the plate deflection. Substituting these expressions into eqns (18b), a compact form can be
rewritten

[rw)/rY =1/2 (36)

such that two integrations yield
w = —Ar +r3/16 + B/r (37
where A is a constant of integration and the symmetry condition w'(0) = 0 implies B = 0.

M, is thus given by M, = 4 — 3r%/16 in the inner region, and by eqn (35) in the outer
region. Continuity of M, at r = g then gives us

A=(1+g°/8)/6g. (38)
Hence, the moments in the inner region (r < g) become

M, = —w" = A —3r¥/16

forr < 39
M= —wir=A—r16 . ¢ 39

where A is given by eqn (38).
Using these expressions in the compliance constraint we get

v i
C= I (M? + M3rdr + f kM, rdr
o o

1
= r[(A — 3r?/16)* + (A — r?}/16)*Jrdr + I k[(1 — r*y6]dr
0 "

1 g* 58° k(3—4g+g*

"% T nTnet T 2 (40)
Moreover, the cost is given by
7] 1

®= J rdr + J [(1 = rP)/6kIrdr = g%/2 + (3 — 4g + g*)/24k. 41)
0 /]

Eliminating k from eqn (40) and employing the result in eqn (41), the total volume becomes

B-4g+gY

® =g
82+ S =136 + £972 — 55115Y)

42)

Introducing the notation D = C — 1/36 + g3/72 — 5g%/1152, B = 3 — 4g + g*, the station-
arity condition d®/dg = 0 for eqn (42) furnishes

576gD* — 8(1 — g*)BD — B*(g*/24 — 5g%/192) =0 (43)
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which gives g, for chosen values of C. Also, we get that the following relations hold true
at the optimum

D = B[(1 ~ g% + J{1 — &%) + 3g(g?/2 — 5g°/16)))/144g
= B(8 — 5g%)/576g (44)
C=D+1/36 — g%/72 + 5g°/1152, k= 24D/B = (8 — 5g°)/24g.

The optimal cost and boundary radius values (C®,,, and g,,) are shown in Figs 6
and 7. The g and k values given by eqns (43) and (44) for given C values must satisfy the
constraint S, < 1 at r = g where S, = M,/k takes on its maximum value in the outer region.
This implies that (1 — g*)/6gk = 4(1 — g>)/(8 — 5g°) < 1, which is clearly fulfilled for all
admissible g values (0 < g < 1).

The upper limiting value of (1/C) for Design D can be caiculated from eqn (40} with
g =1 as the entire feasible plate volume in this case is filled with material and hence no
design can furnish a greater feasible (1/C). The limiting value is thus

1/C = 54.85714286. 45}

6.5. Design E (Sg = 8, = Mg/k, = M, /k, forr < gand Mg = 0, S, = M,/ak, for r > g where
k; and a are constants)

This design is similar to Design C except that different constants {moment/stiffiness
ratios) are used for the inner and outer regions.

The moment fields for this design are the same as for Design C and are given by eqns
(28) and (29). The compliance constraint (19) then takes the form

C = ky(g/6 — g*/24) + ak,(1/8 — g/6 + g*/24)
or (46)
ky = aC
with
a=6/[g—g*/4 +al3/4 — g + g*/4)]. (47

The total cost for this design is given by

1

Q= Y{ZMJ{&; + MJ)rdr + J (M, fok Jrdr
o o

1+ (1 —g%)/6gaC

= g% + 4aC
g+ I e 2gaC

+ (3 — 4g + g*)/24aCa. (48)

Expression (48) implies that optimization of Design E is a two-parameter problem,
min ® = d¥g, a), subject to the constraints $,(0) < 1 and 5,(g) < 1. On the basis of eqns (28)
and (29), these constraints can be rewritten as

S40) = (2/3g + g2/3)/4aC < 1 {49)
54g) = (1 ~ g%)/6gaCa < 1. (50)

Detailed numerical investigations have shown that for (1/C) > 3 the optimal soi'a"tifm
for Design E is controlled by constraint (49) as an equality. For (1/C) < 3 the sensitivity
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of ® for changes in g and a is extremely low and the relevant equations were found
somewhat illconditioned. It can be seen from Fig. 6 that the cost (volume) of Design E is
higher than that of Design D but the difference is small for (1/C) < 20. The optimal cost
values at (1/C) = 10 were found to be 64C®p, = 0.78550116 and 64C®; = 0.78557618 while
at (1/C) = 5 they were 64C®p, = 0.87837477 and 64C®; = 0.87837626. For (1/C) < 3 the
conclusion ®p, < @ could not be confirmed because the difference between the two cost
values was beyond the resolving power of the computer. The optimal g-values for Design
E are shown in Fig. 7.

CONCLUSIONS

(1) The problem of optimizing the microstructure of perforated elastic continua for a
compliance constraint was re-examined in the light of certain fundamental principles of
solid mechanics.

(2) Considering perforated plates under either flexure or plane stress, a comparison
of two classes of microstructures, having the same prescribed stiffness values in the
corresponding principal directions, was presented. It was found that at low rib densities,
a system with first- and second-order infinitesimal rib spacings in the two directions is
more economical than those with the same order of rib spacing in both directions.

(3) As a consequence of Saint Venant’s principle, the proposed micromodel assumes
that on their interior ribs of second-order infinitesimal width are subject to stresses in the
direction of their middle plane only. Hence these ribs do not contribute to the stiffness in
the direction normal to their middle plane. In this respect, the proposed formulation differs
from recent mathematical studies[12, 13] of this problem.

(4) On the basis of the above micromodel, a specific cost function for perforated plates
in bending or plane stress was derived. The latter gives a relationship between the stiffnesses
in the principal directions and the material volume per unit area of the plate middle surface.

(5) The proposed specific cost function was then used for examining the design of
circular, uniformly transversely loaded elastic perforated plates of a prescribed compliance.

(6) It was shown earlier by the first author[22, pp. 184-188] that all solutions for
simply supported circular grillages have the same optimal weight if (a) the principal
moments are everywhere positive and (b) the beam stiffnesses are made proportional to
the moment values. Considering five intuitively selected designs, the same conclusion has
been confirmed for circular perforated plates whose average rib density approaches zero
(i.e. whose prescribed compliance approaches infinity).

(7) In Part II of this study a variational analysis is employed in order to find optimal
designs for transversely loaded axially symmetric plates, and this analysis shows that
first/second-order ribs do not improve economy as compared to use of just first-order ribs.
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